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Abstract

It is usually assumed that the arrivals to a queue will follow a Poisson process. In its

simplest form, such a process has a constant arrival rate. However this assumption is not

always valid in practice. We develop statistical procedures to test a stochastic process is an

inhomogeneous Poisson process, and show that call arrivals to a real-life call center follow

such a Poisson process with an inhomogeneous arrival rate over time. We find that the

inhomogeneous Poisson assumption is reasonably well satisfied. Then we derive statistical

models that can be used to construct predictions of the inhomogeneous arrival rate, and

provide estimates of the parameters in the models. The conclusion that the process is well

modelled as an inhomogeneous Poisson process, together with a statistical model for the

arrival rate in that process, could be used to enable realistic calculations or simulations of

the performance of the queuing system. The models can also be used to predict future call

volumes or workloads to the system.



1 Introduction

Call centers allow groups of agents to serve customers remotely via the telephone. They have

become a primary contact point between customers and their service providers and, as such,

play an increasingly significant role in more developed economies. While call centers are

technology-intensive operations, often 70% or more of their operating costs are devoted to

human resources, and to minimize costs their managers carefully track and seek to maximize

agent utilization. Well-run call centers adhere to a sharply-defined balance between agent

efficiency (measured by utilization level) and service quality (measured by the waiting time

of calls). To achieve the balance, they use queueing-theoretic models. One of the key inputs

to these mathematical models is the rate at which call arrives. As noted in Jongbloed and

Koole (2001) and Gans, Koole and Mandelbaum (2003), uncertainty in call volumes is one

of the main problems in managing a call center.

In this article we propose to model the arrival process to a call center as an inhomogeneous

Poisson process. A testing procedure is also developed to verify the proposal. The process

has a underlying smoothly varying rate function, λ, which depends on some covariates in

the data like date, time of day, type and priority of the calls.

To make things a little complicated, the rate function λ is a hidden function that is

not observed. That is, λ is not functionally determined by date, time of day and call-type

information. This phenomenon is also observed before by Jongbloed and Koole (2001).

Due to this feature, we develop models to predict statistically the number of arrivals as a

function of only those repetitive features. The methods also allows us to construct confidence

or prediction bounds in addition to predictions of future call volumes.

Call-arrival data gathered at an Israeli call center is used as motivation and illustration

of the various problems and methodologies we discuss. We provide a very brief discussion in

Section 2 of this data application.
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The rest of the paper is organized as follows. In Section 2 we describe the call center

data we will use as an example of an application of our methodology. Section 3 proposes

a methodology to test whether a stochastic process can be modelled as an inhomogeneous

Poisson process. The method is also illustrated on the Israeli call center data. After verifying

the call arrival process is an inhomogeneous Poisson process, Section 4 introduces three

different models to estimate the underlying Poisson arrival rate. The models can also be

used to predict future call volumes. We conclude this article with a case study in Section

5, where our proposed tests and models are illustrated on arrival data from an Israeli call

center.

2 Call Center Arrival Data

The data accompanying our study was gathered at a relatively small Israeli bank telephone

call center in 1999. The portion of the data of interest to us here involves records of the

arrival time of service-request calls to the center. These are calls in which the caller requests

service from a call center representative. It is reasonable to conjecture that these arrival times

are well modelled by an inhomogeneous Poisson process, as we will verify later in Section 3.

The arrival rate for this process should depend on time of day, and perhaps other calendar

related covariates such as month or day of the week. There are different categories of service

that may be requested, and preliminary analysis clearly shows that this factor should also

be considered since the arrival rate patterns differ considerably. For more information about

various aspects of this data see Mandelbaum, Sakov and Zeltyn (2000). Different features of

the data are investigated rather broadly by Brown, Gans, Mandelbaum, Sakov, Shen, Zeltyn

and Zhao (2003).
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3 Arrivals are inhomogeneous Poisson

Comments from Haipeng: We would like to describe a procedure that one can

use to show a stochastic process is a Poisson process. To achieve that, we first

show the arrivals do not depend on the exact time clock, then the arrivals are

shown to be independent with each other. Finally we show that the inter-arrival

times are exponentially distributed. The procedure is illustrated using the Israeli

data.

Finally I added a section to show how the Poisson arrival rates are not easily

“predictable”, to motivate the notion of modelling the arrival rates randomly.

Basically this section was in our JASA paper, but was took out due to the length

requirements.

Classical theoretical models posit that arrivals form a Poisson process. It is well known

that such a process results from the following behavior: there exist many potential, statisti-

cally identical callers to the call center; there is a very small yet non-negligible probability

for each of them calling at any given minute, say, so that the average number of calls arriving

within a minute is moderate; and callers decide whether or not to call independently of each

other.

Common call-center practice assumes that the arrival process is Poisson with a rate that

remains constant for blocks of time, often individual quarter-hours, half-hours or hours. A

call center manager will then fit a separate queueing model for each block of time, and

estimated performance measures may shift abruptly from one interval to the next.

A more natural model for capturing both stochastic and operational levels of detail is

a time inhomogeneous Poisson process. Such a process is the result of time-varying proba-

bilities that individual customers call, and it is completely characterized by its arrival-rate

function λ. Knowledge that the arrivals follow an inhomogeneous Poisson process will be
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of use if it turns out that the arrival rate varies relatively slowly in time. Smooth variation

of this sort is familiar in both theory and practice in a wide variety of contexts, and seems

reasonable in call centers.

To be precise, we define an inhomogeneous Poisson process on [0,∞) as follows. Let

t ∈ [0, ∞). Let λ(t) denote the arrival rate, assumed continuous for simplicity, and let

Λ(t) =
∫ t

0
λ(τ)dτ . Let ν(t) denote the cumulative count process for a standard Poisson

process with arrival rate = 1. Thus P{ν(t) ≤ k} = e−k/k! = Poiss(k; 1). Then the

cumulative number of counts for the inhomogeneous process is N(t) = ν(Λ(t)). If λ(t) is

approximately a constant, λ, over some interval, say (a, b) then N(b)−N(a) ≈ Poiss(·, λ).

The assumption that N is such a process can thus be tested by looking at short time intervals,

estimating λ over the interval, and testing whether N(t) follows a Poisson process law with

constant rate λ over the interval. The constant, λ, in this description may depend on the

interval.

We construct below two tests of call center arrival processes designed to determine

whether the process is inhomogeneous Poisson with such a slowly varying arrival rate.

3.1 Testing no time dependence

Our first test is intended to discover whether there may be dependence on the exact clock

time within a given short clock interval over a period of many days. (There seems no a-priori

reason why such dependence should exist in our data; it might in principle occur if several

customers had automatic phone systems designed to call the bank at the same time on every

day.) Choose a given relatively short time interval over which λ(t) can be presumed nearly

constant on any given day. If λ(t) = λdate is a constant over this interval on each day,

then the counts within this time interval over many days will be (approximately) uniformly

distributed as a function of the clock time. This leads to a test of the null hypothesis.
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We illustrate this test by analyzing arrivals on regular workdays from 8/1 through 12/31

during the time interval from 11:15 am to 11:30 am. (We have chosen for relatively arbitrary

reasons to analyze only this 5-month period, rather than the whole year. Analysis of the

entire year’s data yielded qualitatively similar results.)

There were 3544 calls arriving to the queue during this period on such days. The his-

togram of these calls as a function of arrival time is shown in Figure 1.

11.25 11.3 11.35 11.4 11.45 11.5

Figure 1: Histogram of call arrival time, for regular weekday calls from 8/1 through 12/31

between 11:15am and 11:30am. (Time is indicated in decimals of an hour, so 11.25 = 11 :

15am.)

This histogram has a roughly uniform appearance. Standard tests of uniformity can be

applied to this data. For example, the Chi-squared test of uniformity based on the 30 bins

shown in the histogram is based on

χ2 =
∑ (observed bin count− expected bin count)2

expected bin count
,

where expected bin count =3544/30. This test statistic has 29 df under the null hypothesis.

For the data shown in Figure 1 we computed χ2 = 26.4 and P-value = .60.
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Alternatively, one could apply a one-sample Kolmogorov-Smirnov test of uniformity,

based on the statistic

KS = sup
(√

n
∣∣∣F̂n(t)− F (t)

∣∣∣
)

,

where F̂n denotes the sample cumulative distribution function. For the data shown in Figure

1 we computed KS = 0.6727 and P-value > 0.5.

We computed similar χ2 and K-S tests for other 15-minute and 5-minute intervals. Most

were not significant, as above. A few showed modestly significant results, with the most

noticeable of these being for the interval from 2pm to 2:15pm, which had a χ2 value of 57.3

on 29 df (P-value ≈ 0.001) and a similarly significant K-S value.

For the sake of completeness, Figure 2 shows the histogram for the data between 2pm

and 2:15pm. As far as we can see there is no special pattern here to describe the deviations

from the assumed uniformity of the null hypothesis:

14 14.1 14.2

Figure 2: Histogram of call arrival time, for regular weekday calls from 8/1 through 12/31

between 2pm and 2:15pm. (Time is indicated in decimals of an hour, so 14.1 = 2:06pm.)
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3.2 Testing no serial dependence

Comments from Haipeng: Are we trying to establish the independence of the

arrival times here? If so, can we achieve that by showing the various transfor-

mations of the inter-arrival times are uncorrelated? I tried to put in some words

below. Please feel free to modify.

Another possible violation of the Poisson process assumption would involve dependence

among the call arrival times. We can establish the independence by looking at correlations

of various transformations of the inter-arrival times.

3.3 Testing exponentiality of the inter-arrival times

Comments from Haipeng: How does the procedure in this section differ from the

one we used in the JASA paper? If the same, should we stick with the current

presentation or switch to the one in JASA?

Given that we can show that the arrivals do not depend on the exact clock and are

independent among themselves, the Poissonaity of the arrival process can be investigated by

examining the distribution of inter-arrival times. For a homogeneous Poisson process with

given λ these inter-arrival times have an exponential distribution with scale 1/λ. Thus we

can expect the same to be approximately true if we examine inter-arrivals for our data over

suitably short time intervals. However, the value of λ then depends on the interval, and care

must be taken to properly normalize the data to take this into account. A description of our

test procedure follows.

We chose to examine a particular (short) time interval over the period of regular workdays

between 8/1 to 12/31. Let the interval be (a, b) of time length b−a. The analysis below shows

results for the interval between 10am and 10:09am. (This was another interesting interval

from the perspective of the Chi-square analysis described in Section 3.1. The computed
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value was χ2 = 53.36, where we again used 29 df. This corresponds to a P-value of 0.004.)

Let λday denote the latent Poisson rate over the given interval on the indicated day. (λday

is assumed to be constant over the interval on each day.) Let Tday,j denote the time of the jth

arrival on the indicated day. Set Tday,0 = a, the beginning of the interval. Let Gday,j = Tday,j

– Tday,j−1, j = 1, . . . Jday where Jday denotes the number of calls during the interval on that

day. We define

Hday,j =
JdayGday,j

b− a
.

Under the null hypothesis that the process is homogeneous Poisson over each interval

(with a rate that depends on the interval) the values of Hday,j will all be approximately

exponentially distributed with rate = 1. This will be a good approximation so long as the

values of Jday are not small. The values of Hday,j will also be approximately independent.

Hence the null hypothesis can be judged by applying a standard test to assess whether

the observed values of H are exponential with rate 1. We chose to display the data on an

exponential distribution (rate = 1) Q-Q plot and to use the corresponding K-S test for an

exponential (1) distribution.

Figure 3 shows the Q-Q plot for the {H} over the interval in question. The plot exhibits

good visual fidelity to the 45o line corresponding to the null hypothesis. The P-value of the

K-S test here was 0.150. There is no significant evidence in this test that the process is not

an inhomogeneous Poisson process. The result here is fairly typical of those obtained from

the data for other time intervals. (The majority of those intervals had even larger P-values.)

3.4 The Poisson arrival rates are not easily “predictable”

The inhomogeneous Poisson process described above provides a stochastic regularity that

can sometimes be exploited. However, this regularity is most valuable if the arrival rates

are known, or can be predicted on the basis of observable covariates. The current section
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Figure 3: Exponential distribution Q-Q plot for the values of H over the interval from 10am

to 10:09am on weekdays 8/1 – 12/31.

examines the hypothesis that the Poisson rates can be written as a function of the available

covariates: call type, time-of-day and day-of-the-week. If this were the case, then these

covariates could be used to provide valid stochastic predictions for the numbers of arrivals.

But, as we now show, this is not the case.

The null hypothesis to be tested is, therefore, that the Poisson arrival rate is a (possibly

unknown) function λtype(d, t), where type ∈ {PS, NE, NW, IN} may be any one of the

types of customers, d ∈ {Sunday, . . . , Thursday} is the day of the week, and t ∈ [7, 24] is

the time of day. For this discussion, let ∆ be a specified calendar date (e.g. November 7th),

and let Ntype,∆ denote the observed number of calls requesting service of the given type on

the specified date. Then, under the null hypothesis, the Ntype,∆ are independent Poisson

variables with respective parameters

E[Ntype,∆] =

∫ 24

7

λtype(d(∆), t)dt , (1)

where d(∆) denotes the day-of-week corresponding to the given date.
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Under the null hypothesis, each set of samples for a given type and day-of-week, {Ntype,∆ | d(∆) =

d}, should consist of independent draws from a common Poisson random variable. If so, then

one would expect the sample variance to be approximately the same as the sample mean.

For example, see Agresti (1990) and Jongbloed and Koole (2001) for possible tests.

Table 1 gives some summary statistics for the observed values of {NNE,∆ | d(∆) = d}

for weekdays in November and December. Note that there were 8 Sundays and 9 each

of Monday through Thursday during this period. A glance at the data suggests that the

{NNE,∆ | d(∆) = d} are not samples from Poisson distributions. For example, the sample

mean for Sunday is 163.38, and the sample variance is 475.41. This observation can be

validated by a formal test procedure, as described in the following paragraphs.

Day-of-Week # of Dates Mean Variance Test Statistic P-value

(d) (nd) (Vd)

Sunday 8 163.38 475.41 20.41 0.0047

Monday 9 188.78 1052.44 42.26 0.0000

Tuesday 9 199.67 904.00 38.64 0.0000

Wednesday 9 185.00 484.00 21.23 0.0066

Thursday 9 183.89 318.61 13.53 0.0947

ALL 44 Vall = 136.07 0.00005

Table 1: Summary statistics for observed values of NNE,∆, weekdays in Nov. and Dec.

Brown and Zhao (2002) present a convenient test for fit to an assumption of indepen-

dent Poisson variables. This is the test employed below. The background for this test

is Anscombe’s variance stabilizing transformation for the Poisson distribution (Anscombe,

1948).
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To apply this test to the variables {NNE,∆ | d(∆) = d}, calculate the test statistic

Vd = 4 ×
∑

{∆ | d(∆)=d}




√
NNE,∆ + 3/8 − 1

nd

∑

{∆ | d(∆)=d}

√
NNE,∆ + 3/8




2

,

where nd denotes the number of dates satisfying d(∆) = d. Under the null hypothesis

that the {NNE,∆ | d(∆) = d} are independent identically distributed Poisson variables, the

statistic Vd has very nearly a Chi-squared distribution with (nd−1) degrees of freedom. The

null hypothesis should be rejected for large values of Vd. Table 1 gives the values of Vd for

each value of d, along with the P-values for the respective tests. Note that for these five

separate tests the null hypothesis is decisively rejected for all but the value d = Thursday.

It is also possible to use the {Vd} to construct a test of the pooled hypothesis that the

NNE,∆ are independent Poisson variables with parameters that depend only on d(∆). This

test uses Vall =
∑

Vd. Under the null hypothesis this will have (very nearly) a Chi squared

distribution with
∑

(nd − 1) degrees of freedom, and the null hypothesis should be rejected

for large values of Vall. The last row of Table 1 includes the value of Vall, and the P-value is

less than or equal to 0.00005.

The qualitative pattern observed in Table 1 is fairly typical of those observed for various

types of calls, over various periods of time. For example, a similar set of tests for type NW

for November and December yields one non-significant P-value (P = 0.2 for d(∆) = Sunday),

and the remaining P-values are vanishingly small. A similar test for type PS (Regular) yields

all vanishingly small P-values.

The tests above can also be used on time spans other than full days. For example, we

have constructed similar tests for PS calls between 7am and 8am on weekdays in November

and December. (A rationale for such an investigation would be a theory that early morning

calls – before 8am – arrive in a more predictable fashion than those later in the day.) All of

the test statistics are extremely highly significant: for example the value of Vall is 143 on 39
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degrees of freedom. Again, the P-value is less than or equal to 0.00005.

In summary, we saw in Sections 3.1 to 3.3 that, for a given customer type, arrivals are

inhomogeneous Poisson, with rates that depend on time of day as well as on other possible

covariates. In Section 3.4 an attempt was made to characterize the exact form of this

dependence, but ultimately the hypothesis was rejected that the Poisson rate was a function

only of these covariates. For the operation of the call center it is desirable to have predictions,

along with confidence bands, for this rate. We return to this issue in Section 4.

4 Modelling the Poisson rate

It is important to build a stochastic model for the arrival rate. A model of this type can be

used to stochastically predict arrival patterns. Secondarily, it can also be used to more accu-

rately identify whether current arrivals are consistent with previous experience, or whether

they represent changes in the operational environment of the telephone service system. Our

goal in this section is to present a suite of models for inhomogeneous Poisson arrival rates,

and to describe the calculations needed to estimate the parameters in those models.

Jongbloed and Koole (2001) suggest a compound Gamma-Poisson model in a telephone

context similar to ours in order to model the distribution of a one-way collection of counts

like {Njk : j = 1, . . . , J}. Again Njk denotes the number of counts on date j over a (short)

time interval indexed by k. As they note, such models are a familiar tool in other areas

of statistical applications. See for example Agresti (1990, problems 3.16-3.17). We first

extend this idea in order to build a two-way fixed-effects model for the collection of counts

{Njk : j = 1, . . . , J ; k = 1, . . . , K}. We then use a “square-root” transform to convert

this model into an even easier to analyze and interpret Gaussian two-way model and fit

the corresponding parameters. In order to improve the prediction ability of our model, we
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finally introduce an auto-regressive structure into the two-way Gaussian model in order to

capture the intra-day dependence. Brown et al. (2003) suggest that there exists significant

dependence between arrival counts on successive days.

4.1 Model 1: Gamma-Poisson models

Define the usual gamma distribution Γ(r, s) to have density

f(x) =
xr−1e−x/s

Γ(r)sr
for x ∈ (0,∞).

Note that in this parametrization E(X) = rs and V ar(X) = rs2 = sE(X). Also recall

that if X1, . . . , Xn are independent Γ(r1, s), . . . , Γ(rn, s) then
∑

Xj ∼ Γ(
∑

rj, s). To define

the two-way model, let Λjk be independent Γ(µjk/s, s) random variables with µjk = αjβk

and let

Njk ∼ Poiss(Λjk), independent, j = 1, . . . , J, k = 1, . . . , K.

In this model the variables Λjk are unobserved, latent variables with E(Λjk) = µjk,

V ar(Λjk) = µjks. The parameters are α1, . . . , αJ , β1, . . . , βK , and s. A feature of this model

is that the Njk are independent Gamma-Poisson variables. To correspond to this, we use

the notation Njk ∼ Γ-P(µjk/s, s). (Alternatively – as is well-known – we can write the Njk

as Negative-binomial(p, ζjk) variables with p = (1 + s)−1 and index ζjk = µjk/s.) The model

has the property that the marginal totals are also Gamma-Poisson. That is

Nj+ ≡
∑

k

Njk ∼ Γ-P(
αjβ+

s
, s) where β+ =

∑
βk

and

N+k ≡
∑

j

Njk ∼ Γ-P(
α+βk

s
, s) where α+ =

∑
αj.

The parameters of this model can be numerically estimated by maximum-likelihood. See

Jongbloed and Koole (2001) for some relevant remarks. We have done so, and the results

are briefly reported in Section 5.
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4.2 Model 2: Square-root Gaussian model

We wish to concentrate in this section on results from a closely related model that is even

easier to fit, and for which standard regression diagnostics, tests, and prediction methods

can be applied.

Our second, related, model is motivated by the fact that if N ∼ Γ-P(θ/s, s) then

√
N + 1/4 has approximately a normal distribution with mean

√
θ and variance (1 + s)/4.

Note that in this approximation the variance does not depend on θ. Concerning the mean

a more precise statement is that the following approximation is very nearly an equality for

small to moderate s, even for rather small values of θ,

[
E(

√
N + 1/4)

]2

≈ θ. (2)

See Brown, Zhang and Zhao (2001) and Brown and Zhao (2002) for further comments

about this approximation, including remarks about the choice here of the constant 1/4 under

the square root sign. Hence we define

Xjk =
√

Njk + 1/4, ρj =
√

αj, κk =
√

βk, σ2 =
1 + s

4
,

and we model the Xjk as independent normal variables with mean ρjκk and variance σ2. This

is a multiplicative Gaussian model and the maximum likelihood estimates of the parameters

can be obtained by a simple non-linear least squares routine. (Iteratively reweighted least

squares provides an easy scheme. Fix initial {ρj} and fit {κk} by ordinary least squares,

conditional on the given {ρj}. Then proceed similarly to fit {ρj} given the {κk} from that

fit, and iterate the process until it converges. This converges within a few iterative steps as

we fit the model to our data and the results are shown in Section 5.)

Either of the two above models are over-parameterized in the sense that the J + K

quantities {αj, βk} contain only J + K − 1 independent parameters. One side condition

14



needs to be imposed in order to get unique estimates, and so we assume
∑

βk = 1 =
∑

κ2
k.

In this way the estimated values of βk (or κ2
k) become estimates of the conditional density of

the number of observations at time interval k on day j given the overall volume Nj+ on that

day. This also makes the multiplicative structures in the models rather natural. In symbols,

under Model 1,

βk = E(
Njk

Nj+

∣∣∣∣Nj+). (3)

When Model 2 is used this expression is also very nearly correct in view of (2).

Both of the previous models are related to Quasi-likelihood solutions for a suitable Gen-

eralized Linear Model; but they are not the same. See, for example, McCullagh and Nelder

(1989) or Agresti (1990, p457). As we will show in Section 5, these two models yield very

similar results while some standard model diagnostic and prediction techniques can be easily

implemented under the Gaussian model. Another advantage of using the Gaussian frame-

work is that one can easily introduce a time series structure into the model to improve the

forecasting. We will do so in Section 4.3

The constant 1/4 in (2) is the best choice if N is a Poisson(λ) variable. If N ∼ Γ-P(λ, s)

as is the case in Model 2, then the best asymptotic choice of C is C = (1 + s)/4 since a

routine expansion yields

Eλ

(√
N + C

)
=
√

λ +
1

2
√

λ

(
C − 1 + s

4

)
+ O(

1

λ3/2
).

For illustration purpose, Model 2 uses C = 1/4, which will work well if it turns out

that s is small. For situations where ŝ turns out to be large, we recommend redefining

Xjk =
√

Njk + Cnew where Cnew = (1 + ŝ)/4. Then new estimates of the parameters {αj,

βk, s} should be computed. If necessary, this process could be iterated, but we doubt that

more than one iteration should be required for satisfactory numerical accuracy in ordinary

applications. We will also show results from this modification in Section 5.
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4.3 Model 3: Square-root Gaussian model with an AR structure

4.4 On connections with queueing theory applications

Comments from Avi: One should elaborate on the difference between the present

arrival-process model (the arrival rate of the Poisson process is random) and

standard queueing theory assumptions (Poisson arrival rate is either a constant,

or a deterministic function in the case of time-inhomogeneous Poisson process)

should be specified.

An approach to the calculation of performance measures (e.g. average waiting

time) should be, at least, outlined. One possible approach is the following:

Assume the arrival rate is constant during a specific time interval on a given

day. Assume that its distribution on this interval over different days is known.

Then the average performance characteristics for the interval can be obtained

by the integration of the constant-rate steady-state formulae with respect to the

distribution of the arrival rate.

5 Case Study: An Israeli Call Center

5.1 Preliminary Data Analysis and Outliers Detection

Comments: We want to show the time-varying behavior of the arrival process

here. Maybe also high correlation among days.

We have already noted that the data exhibit rare short-term bursts and lulls in arrival

activity. These can best be understood as outliers from a core stochastic model that applies

during the normal operational environment. We will thus focus below on a model that

applies during the period of normal operational environment that encompasses nearly all of
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the system’s operation.

A stochastic model that incorporated the outliers could be built by constructing a mix-

ture model that involved the period of normal operations (as described below) taken with

probability near one, but with a small probability for a different type of environment that

describes the activity during periods when outliers are observed. We do not pursue here the

construction of such a mixture model. One reason is that the part of such a model involving

outliers seems to require a different structure than the one for the normal environment. Also

even with a year’s data we have only a sparse amount of observed outlier activity on which

to base a model for the non-usual environment. Thus a model for this part of the arrival

process would probably need to rely heavily on expert a-priori evaluations about the type

and frequency of outliers to be expected. Such an evaluation would, of course, also require

understanding of the implications of the stochastic model we build below for the normal

environment.

We continue to use the data for regular weekdays from 8/1 through 12/31, from 7am

through midnight. Our model is built from binned data counts, Njk, for short time intervals

within this period. (The count, Njk, is the number of calls arriving during the kth time-

interval period on the jth day among those we analyzed.) For illustrative purposes we work

with 15-minute time intervals. Intervals of about 10-15 minutes in length seem about right

for this amount of data. With more data it would be preferable to use somewhat shorter

intervals.

A first step in our analysis is to identify those time intervals that can be considered as

involving outliers that should not be modelled by our normal-environment model. Figure

4 is a scatterplot showing the values Njk by time of day. We subjectively identified 21

outliers among the 7,269 values. These are shown with either asterisks or open circles on

the scatterplot.
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If we were to remove just these 21 outlying values we would then be left with the analysis

of an unbalanced model. This is feasible by the methods described below, but as is familiar

in other statistical contexts balanced models are somewhat easier to analyze and interpret.

Since our goal is primarily to illustrate the analysis, rather than to get the very best available

estimates, we decided to delete entire days on which multiple outliers occurred. This leaves

us with a balanced model with very few remaining outliers in the data. We thus removed

five entire days of data from our analysis. The asterisks on the plot show the 15 outliers that

were on those 5 removed days. (For example the four asterisks between times 15 (=3pm)

and 16 all occurred on 12/30, the last regular working day of the year. The two asterisks

above 90 at times 20.5 and 20.75 occurred on 8/09. In general there seemed nothing else

out of the ordinary on the five removed days other than the values of Njk shown as asterisks

on the plot, and those for a few neighboring quarter-hour periods that had slightly elevated

values. Since these days appeared fairly routine apart from the outlying observations, it

appears that removing the entire days has roughly the same impact on the final result of the

analysis as would have occurred from removing just the outlying values.

The six outliers shown as open circles on the plot occurred as isolated instances on six

separate days. We decided not to remove these days from our analysis. Note the outlying

value of 89 at 15.25 (on 8/16). This will remain throughout our analysis as a very noticeable

outlying observation.

In addition there was one day (10/06) on which the data was missing for the final 7

quarter-hour periods of the day. We decided to also remove this day from our analysis, again

in order to preserve the computational and interpretational simplicity of a balanced design.

We are thus left with 6868 observations, to be indexed as Njk, j = 1, . . . , 101, k = 1, . . . , 68

corresponding to 68 quarter-hour counts on 101 days.
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Figure 4: Scatterplot of values of Njk. Asterisks show outliers on the 5 days later removed

from the analysis. Open circles show other outliers.
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5.2 Model Results

Figure 5 shows the values of the estimates κ̂2
k = β̂k derived from our data using Model

2. Since the second model has a Gaussian structure, it is easy to also derive (asymptotic)

confidence limits for the estimates κ̂k, and then to convert these into confidence limits for

β̂k = κ̂2
k.

These confidence limits are also shown on Figure 5.

0.01

0.02

0.03

Y

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

time#

Figure 5: Estimated conditional density by time, from model 2; and lower and upper 95%

confidence limits. (Data for weekdays 8/1 – 12/30 with 6 days removed.)

In addition we note that the average of the squared residuals is 0.358. Hence ŝ(2) =

4× (0.358−0.25) = 0.432. (As one should expect this value is very nearly the same estimate

as is derived for s in an analysis of our Model 1 – the Gamma-Poisson model. See Table 2

We also note that the value of s in either model is a function of the basic time intervals used.
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For example, if we were to have used 10 minute intervals (2/3 as long) then we would expect

to find ŝ ≈ (2/3)2 × 0.432 = 0.192. Thus, as the time intervals become shorter it becomes

harder to distinguish between the Gamma-Poisson model and a pure Poisson model.)

Because Model 2 is Gaussian, it is possible to use well-known diagnostic techniques in

order to judge how well the data corresponds to the model. Figure 6 is a plot of residuals

versus time. There is no particular evidence of strong heteroscedasticity as a function of

time. The observation from time 15 1/4 on 8/16 does stand out as an outlier, as one should

expect. The residual plot versus day (not shown here) is similarly benign.
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Figure 6: Residual plot for the data in Figure 5.

It is further desirable to check whether the residuals satisfy the model’s assumption of

normality. As usual this can be done visually by constructing a normal quantile plot of the

residuals. This is shown in Figure 7.

Apart from about a dozen too-large residuals (especially that on 8/16 mentioned above)

this plot visually agrees quite well with the assumed normal distribution. A Kolmogorov-
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Figure 7: Histogram and normal quantile plot of the residuals for the data in Figure 5.

Smirnov test of normality yields the K-S statistic sup
{√

n
∣∣∣F̂n(t)− Φ(t)

∣∣∣
}

= 0.8681(where

F̂n denotes the sample cdf of the normalized residuals). This has a P-value of 0.56, a

remarkably insignificant value considering the large sample size of n = 101 × 68 = 6868.

We conclude that our Model 2 provides a very suitable model for this data. (The Gamma-

Poisson model described in Section 4.1 is closely related to Model 2, and so is presumably

also a very suitable model.)

We also carried out an analysis of the data of Figure 5 using the Gamma-Poisson model

of Section 4.1. The results are strikingly similar to those from Model 2. Table 2 displays

this similarity. It gives various quantiles from the distribution of {α̂(2)
j /α̂j} and of {β̂(2)

j /β̂j}

where α̂j, β̂j are the estimates from the Γ-P model and α̂
(2)
j , β̂

(2)
j are the estimates from

Model 2.

In addition we recomputed results from the modified Model 2 type of analysis, beginning

with

Xjk =
√

Njk + (1 + ŝ)/4

where we took ŝ from the Γ-P estimates. Table 2 also displays results from this recomputed
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analysis.

Note that the results from the recomputed analysis are even closer to those from the Γ-P

model. The most noticeable difference is that the first Model 2 analysis tends to slightly

underestimate the αj coefficients that correspond to daily volume, and this systematic un-

derestimation is eliminated in the recomputed model.

The estimated values of s from the three models were

ŝ = 0.4329, ŝ(2) = 0.4336, ŝ(3) = 0.4244.

(The recomputed model gives a slightly smaller value of ŝ; but its sample variance of residuals,

(Njk − N̂jk), is only very slightly less (32.864 vs 32.688).)

Percentile Percentile Name α̂
(2)
j /α̂j α̂

(3)
j /α̂j β̂

(2)
k /β̂k β̂

(3)
k /β̂k

100.0% maximum 0.9981 1.003 1.003 1.003

90.0% 0.9972 1.002 1.002 1.002

75.0% quartile 0.9967 1.001 1.001 1.001

50.0% median 0.9958 1.000 1.000 1.000

25.0% quartile 0.9946 0.999 0.997 0.999

10.0% 0.9919 0.997 0.993 0.998

0.0% minimum 0.9849 0.991 0.989 0.995

Table 2: Ratios of coefficients of Gamma-Poisson and Model 2 Analyses: α̂
(2)
j , β̂

(2)
k correspond

to Xjk =
√

Njk + 1/4; α̂
(3)
j , β̂

(3)
k correspond to Xjk =

√
Njk + (1 + ŝ)/4.

5.3 Prediction with Model 2

For planning of facilities and staffing it is important to have prediction confidence statements

of arrivals at particular times of day. The overall objective would then be to combine these in
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a queuing model along with stochastic information about service times and customer patience

in order to derive realistically tuned service models. In order to form such statements we

need to also study the distribution of αj = ρ2
j . Figure 8 is a histogram and normal quantile

plot of the values of ρj.
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Figure 8: Histogram and normal quantile Plot of ρ for the data in Figure 5

It is evident that the daily effects, {ρj}, in this model are well modelled by a normal dis-

tribution with a mean µ̂ρ = 39.709 and a standard deviation σ̂ρ = 3.633. (Correspondingly,

we should expect that if one adopts the Gamma-Poisson model the {αj} in that model are

approximately distributed as Γ-P(39.7092, 4× (3.6332− 0.25)) = Γ-P(1580, 51.8). (The {αj}

in turn can be thought of as adjusted estimates of the {E(Nj+)}. The mean and standard

deviation of the Γ-P(1580, 51.8) distribution are µ = 1580 and σ = 288.8. The observed

sample mean and standard deviation of {Nj+} are 1597.2 and 285.4, respectively, which

agrees fairly well with the Γ-P mean and variance just described.)

Let X∗
∗k denote a future observation at time period k. We have the following distributions,

or estimated distributions. (In the following N(µ, σ2) denotes the normal distribution with
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the indicated mean and variance, and the symbol ∼ indicates an approximate (asymptotic)

distributional assertion and ≈ an approximate (asymptotic) equality.)

N∗
∗k = (X∗

∗k)
2 − 1/4, X∗

∗k = ρjκk + ε∗k where ε∗k ∼ N(0, σ∗2) ,

κ̂k ∼ N
(
κk, σ

2
κ,k

) (
where σ2

κ,k =
σ ∗2 (1− κ2

k)∑
ρ2

j

)
,

ρ̂ ∼ N(µρ, σ
2
ρ ) .

(The value for σ2
κ,k is the result of a routine asymptotic calculation of Fisher information

for this model.)

The relevant parameters can be estimated here from the data as

σ∗2 ≈ σ̂∗2 = 0.358, the mean square residual,

σ2
κ,k ≈ σ̂2

κ,k = 3.3114× 10−6 × (1− κ̂2
k),

µρ ≈ µ̂ρ = 39.709, the sample mean of {ρ̂j},

σ2
ρ ≈ σ̂2

ρ = 13.201, the sample variance of {ρ̂j}.

We write κ̂k ∼ κk +εκ,k, µ̂ρ ∼ µρ+ερ where the εκ,k, ερ, and ε∗ are independent normal

variables with mean 0 and the indicated variances. Then

Pr(N∗
∗k ≤ C2) ≈ Pr(X∗

∗k ≤ C) ≈ Pr ((µ̂ρ − ερ)(κ̂k − εκ,k) + ε∗ ≤ C) .

The probability on the right is easy to simulate, but numerically this is not needed since

ερεκk is a nearly negligible quantity. We can thus write,

Pr(X∗
∗k ≤ C) ≈ Φ

(
C − µ̂κ̂k

(µ̂2
ρσ

2
κ,k + κ2

kσ
2
ρ + σ∗2)1/2

)
.

This yields 100(1− α)% prediction limits of the form

N∗
∗k ∈

(
µ̂ρκ̂k ± z1−α

√
µ̂2

ρσ
2
κk + κ2

kσ
2
ρ + σ∗2

)
, (4)

where z1−α is the indicated normal quantile.
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It is also possible to use this same line of reasoning to develop confidence limits for the

parameter E(N∗
∗k). This yields 100(1− α)% limits of the form

E(N∗
∗k) ∈

(
µ̂ρκ̂k ± z1−α

√
µ̂2

ρσ
2
κk + κ2

kσ
2
ρ

)
. (5)

Figure 9 displays the result of using these formulas to yield prediction limits and prediction-

confidence limits for future values of N∗
∗k and E(N∗

∗k). As is familiar from other applications

contexts these prediction bands are much wider than are confidence bands for corresponding

expectations. More striking is that these bands are both much wider than those in Figure

5 for the conditional density given N+k. This is because the prediction accuracy is strongly

influenced by the variability of the {N+k}, and this is qualitatively much larger than the

variability of the conditional variables Njk given N+k.

5.4 Prediction with Model 3

6 Conclusion
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